HOME  >  ACADEMICS   >  COURSE CATALOG 2017-18

 

Table of Contents

Wheaton in Profile

Undergraduate Student Life

Undergraduate Admissions

Undergraduate Academic Policies and Information

Special Programs

Arts and Sciences Programs

Conservatory of Music

Graduate Academic Policies and Information

Graduate Programs

Financial Information

Directory

College Calendar

 

CATALOG SEARCH

CATALOG A-Z

PDF VERSION

REGISTRAR HOME


 

  

Physics and Engineering

Visit Department website

 

Departmental Mission Statement

Requirements for B.S. Physics Major (pre-research or college teaching)

Requirements for B.A. Physics Major (pre-professional schools)

Requirements for B.S. Physics Major with Secondary Education Teacher Licensure

Requirements for B.S. Physics: Applied Physics Major

Requirements for B.S. Physics: Geophysics Major

Requirements for Minor

Physics Course Descriptions

Astronomy Course Descriptions

Requirements for Engineering Dual Degree Program

Engineering Course Descriptions

 

Chair, Associate Professor Darren Craig

Associate Professors Robert Bishop, Heather Whitney

Assistant Professors David Hsu, Arend Poelarends

 

Our department serves physics and engineering majors and the general Wheaton student population by providing robust student-centered learning experiences that draw on the unique ways of knowing common to our discipline from a genuinely Christian liberal arts perspective. The study of matter, energy, and their interactions provides fertile ground for enhanced worship of the Creator and for collaborative theoretical, experimental, and computational learning and research among faculty and students in a strong and supportive community. Students grow in their love and worship of God by engaging with His good creation and preparing for lives of service to the church and society.

The department offers several tracks of study leading to a Bachelor of Science or Bachelor of Arts in Physics. A Dual Degree Engineering Program is also available leading to two degrees: a Bachelor of Arts or Science in Liberal Arts Engineering from Wheaton combined with a full Bachelors degree from any other school that offers a fully ABET accredited program in the engineering discipline of interest. Detailed requirements and course offerings for both physics and engineering are summarized below.

Physics

The physics curriculum is organized to prepare a student for graduate work in physics or a related discipline as well as a range of other vocations that make use of the analytical and problem solving skills of a physicist. The Bachelor of Science in Physics track incorporates all of the necessary coursework to prepare a student for graduate work in physics. The Bachelor of Arts in Physics overlaps nearly completely with the Bachelor of Science track but allows the student more freedom to select from a set of upper level core courses. The BA degree is not appropriate for those going on to graduate work in physics but provides more flexibility for those who want to double major or study abroad and who plan to go on to professional schools such as law or medicine or go straight into the workplace after graduation. The Bachelor of Science with Secondary Education track prepares students for high school physics teaching. The Bachelor of Science in Applied Physics replaces some of the upper division physics requirements with required engineering coursework and is a good choice for those who plan to pursue engineering or a related field after graduation. The Bachelor of Science degree in Geophysics offer students the opportunity to substitute advanced coursework in geology for some of the advanced coursework in physics and is a good option for a student interested in resource exploration, international development work, or preparing for a career in civil engineering.

All physics majors are strongly encouraged to complete the PHYS 294 requirement in their first year.

Bachelor of Science in Physics requirements are 36 hours in physics, including PHYS 231, 232, 294, 334, 331, 341, 342, 344, 345, 351, 494 and at least 2 additional hours chosen from PHYS 311, 352, 354, 359, 361, 362, 366, and 367. PHYS 343 or an approved research experience is required. Supporting course requirements are MATH 231 or 233, 232 or 234, 245, 331, and 333 and CHEM 231. PHYS 359 and research experience are strongly recommended for those going on to graduate studies in physics.

Bachelor of Arts in Physics requirements are 32 hours in physics, including PHYS 231, 232, 294, 334, 331, 341, 345, 351, 494, one course selected from PHYS 342, 344, or 359, and at least 2 additional hours chosen from PHYS 311, 352, 354, 359, 361, 362, 366, and 367. PHYS 343 or an approved research or internship experience is required. Supporting course requirements are MATH 231 or 233, 232 or 234, 245, 331, and 333, CHEM 231, and one 4 hr course outside the PHYS prefix approved by the advisor as contributing to the student's intended post-graduation plans. Students wishing to pursue graduate studies in physics should not complete the BA but should instead complete the requirements for the BS in Physics.

Bachelor of Science in Physics with Secondary Education requirements are 32 hours in physics, including PHYS 231, 232, 294, 334, 331, 341, 345, 351, 494, one course chosen from PHYS 342, 344, or 359; and at least 2 additional hours chosen from PHYS 311, 343, 352, 354, 359, 361, 362, 366, 367, 495, or 496. Supporting course requirements include MATH 231 or 233, 232 or 234, 245, 331, and 333; CHEM 231; ASTR 305; GEOL 211; BIOL 201 or 241; SCI 321 and SCI 325; Education courses as specified by the Education Department. Students opting for this program should spend at least one year as a teaching assistant in the Physics Department. Completion of these requirements will lead to teacher licensure. A Master of Arts in Teaching (MAT) program is also available with a Physics major. A combined Bachelor’s/MAT program may be completed in five years and one summer. See the Education section in this catalog.

Bachelor of Science in Physics: Applied Physics: requirements are 26 hours in physics including PHYS 231, 232, 294, 334, 331, 341 (or ENGR 202), 345, 351, 494 (or ENGR 394) plus 8 additional hours in engineering including any two 4 hour courses with the ENGR prefix. ENGR 202 may not be one of the two additional ENGR courses if it is also substituting for PHYS 341. PHYS 343 or an approved research or internship experience is required. Supporting course requirements are MATH 231 or 233, 232 or 234, 245, 331, and 333, and CHEM 231.

Bachelor of Science in Physics: Geophysics requirements are 26 hours in physics, including PHYS 231, 232, 294, 334, 331, 341, 345, 351, 494; 16 hours in Geology, including GEOL 201 or 211 or 221, 321 or 437, 365, 443, and 2 hours of GEOL 495. Supporting course requirements are MATH 231 or 233, 232 or 234, 245, 331, and 333, and CHEM 231.

Requirements for a minor in Physics are 20 hours in physics, including PHYS 231 or 233, 232 or 234, 334, and eight additional hours chosen from other courses applicable to the department major. PHYS 321 and 322 do not count toward the 20 hours for a minor.

The Departmental Honors Program is available to all physics majors who maintain a 3.70 GPA in the major, and an overall GPA of 3.50. Eight credit hours of designated honors coursework are required, four of which may consist of a modified major course, and four of which must be PHYS 499, resulting in the completion of a research thesis. Successful completion of the program will result in a Departmental Honors designation on the student’s transcript. Students must submit an application to the department at least one year prior to graduation to participate in the honors program. See the department for details.

Physics Courses (PHYS)

See the Financial Information section of this catalog for course fees.

PHYS *205. Physics of Music. Basic concepts of sound and acoustics; vibrations, waves, fundamentals and overtones, musical scales, harmony, noise, physical and physiological production, and detection of sound waves; acoustical properties of materials and enclosures. (2)

PHYS *221. General Physics I. Newtonian mechanics, energy, waves and heat. Non-calculus based. Four hours lecture, three hours laboratory. Prerequisite: Pre-calculus (algebra and trigonometry) competence. Not open to students with prior credit for PHYS 231 or 233. SP

PHYS *222. General Physics II. Electromagnetism, optics, and modern physics. Non-calculus based. Four hours lecture, three hours laboratory. Prerequisite: PHYS 221. Not open to students with prior credit for PHYS 232 or 234.

PHYS 228. University Physics I. Newtonian mechanics, energy, waves and heat. Calculus based. Four hours lecture, three hours laboratory. Pre or Corequisite: MATH 231 or equivalent. Not open to students with prior credit for PHYS 231 or 233. Summer only.

PHYS 229. University Physics II. Electromagnetism, optics, and modern physics. Calculus based. Four hours lecture, three hours laboratory. Prerequisite: PHYS 228 and MATH 232 or equivalent. Not open to students with prior credit for PHYS 232 or 234. Summer only.

PHYS 231. Introductory Physics I. Kinematics, Newtonian dynamics, conservation laws, and selected topics from oscillations, waves, fluids, and thermodynamics. Four hours lecture, three hours laboratory. Co or Prerequisite: MATH 231. SP

PHYS 232. Introductory Physics II. Electricity and magnetism, optics, and selected topics from modern physics, waves, and thermodynamics. Four hours lecture, three hours laboratory. Prerequisite: PHYS 231. Co or Prerequisite: MATH 232.

PHYS 233. Introduction to Special Relativity. Reference frames, nature of spacetime, conservation of four-momentum. Prerequisites: score of 4 or 5 on AP Physics C- Mechanics or equivalent or PHYS 228. Pre or Corequisite: MATH 231. (1)

PHYS 234. Introduction to Quantum Mechanics. Quantum mechanics, atomic and nuclear physics. Four hours lecture, three hours laboratory. Prerequisites: PHYS 231 or PHYS 233 and score of 4 or 5 on AP Physics C- Electricity/Magnetism or equivalent or PHYS 229. Pre or Corequisite: MATH 232 or equivalent. (2)

PHYS 294. Physics for the Future. The beginning of an exciting journey into the intricacies of our created world. Includes discussion of recent physics breakthroughs, exposure to research at Wheaton and at nearby national laboratories, discussion of vocational pathways, and thoughts on the relationship of physics to the liberal arts and the Christian faith. (2, lin)

PHYS *301. Origins of Modern Science. The historical development of science from its Babylonian and Egyptian origins, through Greek science to the scientific revolution, including basic concepts in astronomy and mechanics, and their cultural interactions. Prerequisite: 4 hour lab course in the legacy Studies in Nature cluster or any SP course. Counts as upper division science requirement under legacy gen ed only. (2)

PHYS *302. Ideas of Modern Science. The historical development of the ideas of science from the Newtonian synthesis to the present, including concepts in optics, electromagnetism, relativity, and quantum theory and their cultural interactions. Prerequisite: 4 hour lab course in the legacy Studies in Nature cluster or any SP course. Counts as upper division science requirement under legacy gen ed only. (2)

PHYS *305. Dakota Skies: Astronomy and Atmospheric Science in the Black Hills. An introduction to the study of the weather and the universe. Topics include physical foundations for astronomy and atmospheric science, the evolution of stars, the structure and origin of the universe, the structure of the earth's atmosphere, weather systems, weather analysis and forecasting. Special attention will be given to sound scientific practices, including systematic scientific investigations, critical evaluation of scientific claims and the ability to develop a sound scientific argument. SP

PHYS 311. Introduction to Medical Physics. A survey of radiation therapy, nuclear medicine, diagnostic imaging, and health physics with discussion on ethical and stewardship concerns of these technologies. Prerequisites: PHYS 222 or 232 or 234. (2)

PHYS *315. Topics in Physical Science. Selected topics from the following: atmospheric physics, cosmology, or nonlinear dynamics and chaos. Counts as upper division science requirement under legacy gen ed only. (2)

PHYS 321. Math Methods for Physics and Engineering I. Vector Calculus, Matrices and Determinants, Linear Vector Spaces, Probability and Statistics. Applications in classical and quantum mechanics, electricity and magnetism appropriate for science and engineering. Prerequisite: PHYS 232 or 234 and MATH 232.

PHYS 322. Math Methods for Physics and Engineering II. Infinite Series, Fourier Analysis, Ordinary and Partial Differential Equations, Special Functions, Calculus of Variations. Applications in classical and quantum mechanics, electricity and magnetism appropriate for science and engineering. Prerequisite: PHYS 232 or 234 and MATH 232.

PHYS 331. Spacetime and Quanta. Special Relativity, Quantum Mechanics, and selected topics from Atomic Physics, Statistical Physics, Nuclear Physics, Particle Physics, Solid State Physics, and Cosmology. Four hours lecture. Co or Prerequisite: MATH 245 and 333.

PHYS 333. Thermal Physics and Fluids. An introduction to the thermodynamic principles of microstates, entropy, and heat engines as well as basic fluid mechanical concepts of buoyancy and fluid flow. Prerequisite: PHYS 232 or 234. (2)

PHYS 334. Computer Modeling of Physical Systems. An introduction to computer methods for the analysis, modeling and simulation of physical systems and analysis of experimental data. Applications taken from mechanics, fluids, electricity and magnetism. Prerequisite: PHYS 232 or 234. (2)

PHYS 335. Modern Science Skills Laboratory. Development of skills in experimental technique, error analysis, writing lab reports, oral presentations, use of spreadsheets and Matlab, and the study of ethical issues in industry. Prerequisites: PHYS 334. (2, lin)

PHYS 341. Analytical Mechanics. Particle and rigid body dynamics, central forces and gravitation, rotating systems and bodies, Lagrange and Hamilton formulations, generalized coordinates, and normal modes. Prerequisites: PHYS 334, PHYS 321 (or MATH 331 and MATH 245), and PHYS 322 (or MATH 333).

PHYS 342. Electromagnetic Theory. Electrostatics, steady currents, linear materials, electromagnetic induction, Maxwell's equations, and electromagnetic waves. Prerequisites: PHYS 334 and PHYS 321 (or MATH 331). Pre or Corequisite: PHYS 322 or MATH 333. Alternate years.

PHYS 343. Methods of Experimental Physics. Design of scientific investigations; experimental methods and instrumentation; construction of scientific arguments from data. Six hours laboratory. Prerequisites: PHYS 334 and Junior or higher standing. (2)

PHYS 344. Quantum Mechanics. Elements of quantum physics, solutions of Schrödinger's equation applied to atomic and molecular structure, applications, interpretations. Prerequisites: PHYS 334, PHYS 321 (or MATH 331 and MATH 245), and PHYS 322 (or MATH 333). Alternate years.

PHYS 345. Methods of Data Analysis and Presentation. Development of skills in data and error analysis, technical communication, and scientific argument. Prerequisite: PHYS 334 (2)

PHYS 351. Analog Electronics. Basic principles of electronic circuits and devices. AC and DC circuit fundamentals, filters, diodes, transistors, amplifiers, and operational amplifiers. Four hours lecture, three hours laboratory. Pre or Corequisite: PHYS 334. (2)

PHYS 352. Computer Data Acquisition. Digital electronics, analog to digital conversion, computer interfacing, and data acquisition with LabVIEW software. Four hours lecture, three hours laboratory. Prerequisite: PHYS 351. Alternate years. (2)

PHYS 353. Introductory Optics. Electromagnetic and quantum mechanical theory of light, geometrical and physical optics, interference, diffraction, and optical instruments. Four hours lecture, three hours laboratory. Prerequisite: PHYS 334 and PHYS 335 (or consent of instructor). Alternate years. (2)

PHYS 354. Advanced Optics. Light propagation in matter, polarization, Fourier optics, aberrations, holography, lasers, and modern optical materials and components. Four hours lecture, three hours laboratory. Prerequisite: PHYS 353. Pre or Corequisite: PHYS 322. Alternate years. (2)

PHYS 359. Thermodynamics. Theory of heat and gases, introduction to kinetic theory and statistical mechanics. Alternate years. Prerequisite: PHYS 333 and PHYS 334.

PHYS 361. Solid State Physics and Nanotechnology. Bonding and structure of crystals, electronic properties of insulators, semiconductors, metals, and superconductors, limits of smallness, molecular assembly, and nanoscale physics. Prerequisite: PHYS 344 or CHEM 371. Alternate years. (2)

PHYS 362. Plasma Physics. Introduction to plasma physics including definition of a plasma, single particle and guiding center motions, fluid descriptions, waves, instabilities, and applications of plasma physics in space and astrophysics, controlled thermonuclear fusion, and industry. Pre or Corequisite: PHYS 342. Alternate years. (2)

PHYS 366. Particle Physics and Cosmology. Elementary particles, fundamental interactions, conservation laws and symmetries, big bang cosmology, dark matter and dark energy. Prerequisite: PHYS 334. Alternate years. (2)

PHYS 367. Introduction to Stellar and Galactic Astrophysics. Introduction to stellar and galactic astrophysics with an emphasis on the underlying physical principles. Course has an integrated lab component (2 hours lecture, 1 hour lab per week) Topics: Structure and evolution of stars, stellar atmospheres and spectra, binary stars and stellar remnants. Galactic dynamics, morphology, and evolution; large-scale structure of the universe. Prerequisite: PHYS 322 (or Math 333) and PHYS 334. Alternate years. (4)

PHYS 494. Senior Seminar. Study of the wider cultural significance of physics including its historical development; its relationship to other disciplines; its philosophical interpretations; its place in a Christian worldview; and one's stewardship toward society. Independent study and classroom presentation. Prerequisite: senior standing in the major. (2, lin)

PHYS 495. Independent Study. Independent research. (1-4)

PHYS 496. Internship. Supervised off-campus experience with departmental approval. Graded pass/fail. Prerequisite: junior or senior standing with Physics major. (2-4)

PHYS 499. Honors Thesis. An independent project providing original physics research developed in a scholarly paper and culminating in an oral examination. Partially fulfills requirements for an honors degree in physics. Additional requirements are available in the Physics Office. (2-4 hours).

*Not applicable to physics major or minor.

Astronomy Courses (ASTR)

ASTR 301. Planetary Astronomy. Observation of the sky and its cycles. Study of historical ideas about the planets, origin and development of the solar system, and modern discoveries in planetary astronomy. Prerequisite: 4 hour lab course in the legacy Studies in Nature cluster or any SP course. Counts as upper division science requirement under legacy gen ed only. (2)

ASTR 302. Stellar Astronomy. Observation of the sky and it cycles. Study of Big Bang Cosmology and the life history of stars in the light of Christian theology. Prerequisite: 4 hour lab course in the legacy Studies in Nature cluster or any SP course. Counts as upper division science requirement under legacy gen ed only. (2)

ASTR 303. History of Cosmology. Study of the historical development of cosmology in ancient Egypt, Mesopotamia, India, Greece, Asia, and the Americas through contemporary developments. Cultural and religious interactions with developments in cosmology are emphasized. Prerequisite: 4 hour lab course in the legacy Studies in Nature cluster or any SP course. Counts as upper division science requirement under legacy gen ed only. Legacy diversity designation (2)

ASTR 304. Global History of Cosmology. Study of the historical development of cosmology in ancient Egypt, Mesopotamia, India, Greece, Asia, and the Americas through contemporary developments. Cultural and religious interactions with developments in cosmology are emphasized. Prerequisite: a Scientific Practice (SP) course. GP, SIP

ASTR 305. Astronomy. An introduction to the study of the universe. Topics include the solar system, the formation and evolution of stars and the structure, evolution and origin of the universe. Special attention will be given to the social, historical, philosophical and theological context of astronomical discoveries and controversies. SIP

Engineering Dual Degree Program

A five-year program is offered leading to two degrees, a Bachelor of Arts or Bachelor of Science from Wheaton and an engineering degree from an ABET accredited engineering program at another institution. This arrangement allows students to complete degrees in a wide array of engineering disciplines. The student must meet the requirements of the school to which admission is sought. A transfer agreement is in place with Illinois Institute of Technology (IIT) but students may transfer to any ABET accredited engineering program at other institutions as well.

Several commonly required lower division engineering courses are offered by engineering faculty at Wheaton to prepare students for successful completion of engineering requirements at the engineering school in the final two years of the dual degree program. (See course information below.) Transfer of the Wheaton College engineering courses to meet requirements at engineering schools is likely but not guaranteed. Each student should verify that any courses taken at Wheaton will transfer successfully for the specific program and institution of interest.

A joint program arrangement with IIT allows students to take other engineering courses not offered at Wheaton during the first three years of the five year program. An agreement with the nearby College of DuPage (COD) also allows students to take selected engineering coursework there during the first 3 years. Students must complete appropriate paperwork and register at both Wheaton College and either IIT or COD for the courses taught at these institutions in the first three years. IIT courses will usually be taken at the IIT main campus in Chicago but some courses may be made available on internet upon request. Approved course tracks for the full five years with IIT as the transfer school are available from the Department. IIT programs are available in aerospace, architectural, biomedical, chemical, civil, computer, electrical, and mechanical engineering.

Students completing their engineering coursework at a school in the vicinity of Wheaton College (e.g. IIT or University of Illinois - Chicago) during the last two years of the five year program, by virtue of their continuing in the Wheaton College dual degree program, may remain in Wheaton College housing and may continue to participate fully in extra-curricular activities at the College, including athletics.

Requirements for the Wheaton degree include: ENGR 101, 394, and either ENGR 204 or PHYS 345; PHYS 231, 232, and 334; completion of remaining engineering requirements at an ABET accredited program. Supporting course requirements are MATH 231 or 233, 232 or 234, 331, and 333 and CHEM 231. MATH 245 is strongly recommended and is required by many engineering schools. Students planning a degree in biomedical or chemical engineering are exempt from PHYS 345 provided that they take CHEM 341 and 342. See department for course plans, including additional ENGR and other courses that will satisfy requirements at the engineering school of choice. Students in the engineering program have modified Christ at the Core general education requirements. Students are only required to take one 4 hour Foreign Language course, they are not required to complete the Scientific Issues and Perspectives (SIP) theme, and they should choose 4 of the following 5 themes: Diversity in the United States (DUS), Global Perspectives (GP), Historical Perspectives (HP), Literary Explorations (LE), and Philosophical Investigations (PI). The remaining Christ at the Core requirements are the same as for all other majors. Some engineering schools will require additional coursework beyond the Wheaton requirements prior to transfer. Some schools may also require Christ at the Core Thematic courses to be taken from specific departments. Students should consult with their advisor and the engineering school of interest to ensure courses taken at Wheaton will meet requirements at the engineering school. Up to eight hours of non-major courses at the engineering school may be transferred back to Wheaton to meet Wheaton requirements.

In all cases a transcript from the engineering school indicating that all engineering requirements have been met must be received by the Wheaton registrar before the Wheaton Liberal Arts Engineering degree will be conferred. Students who complete all Wheaton College course requirements by the end of their fourth year may participate in the commencement ceremonies of that year.

Engineering Courses (ENGR)

ENGR 101. Introduction to the Engineering Profession. Introduces students to the engineering profession. The engineering disciplines, problem solving approaches, design processes, professional practices, licensure, engineering ethics, and teamwork will be explored through discussion, reading, research, and guest visits by practicing engineers. The importance of the liberal arts and the impact of faith on the practice of engineering will be explored. Freshmen and sophomores only. (1)

ENGR 105. Fundamentals of Engineering Graphics. Introduces students to engineering graphics, the means by which engineers communicate design and fabrication information. Topics cover: utilization of engineering graphics; information on graphics; use of the basic graphic tools; orthographic views in both third and first angle projections; auxiliary, section, isometric, and perspective views. This course acquaints students with the processes that are automated within Computer Aided Drafting and Design (CADD) software and expectations for CADD work product. (2, linear)

ENGR 125. Introduction to AutoCAD. Introduction to AutoCAD with emphasis on the fundamentals of Computer-Aided Drafting and Design (CADD). Introduces concepts, techniques and procedures necessary to facilitate a basic functional understanding of AutoCAD and the process of using AutoCAD tools to create, dimension, and annotate basic engineering drawings. (2, linear)

ENGR 201. Engineering Mechanics 1 - Statics. Systems of units; gravitation; Newton’s laws of motion; equilibrium and free-body diagrams; particles, forces and moments; structures in equilibrium; centroids and center of mass; moments of inertia; friction; beam loadings; cables; fluids; virtual work and potential energy; particle kinematics; and, rotating bodies. Prerequisites: MATH 231 and PHYS 231 or 233 or 228.

ENGR 202. Engineering Mechanics 11. – Dynamics. Topics include: kinematics and kinetics of particles; Newton’s laws of motion; energy, momentum, systems of particles; rigid bodies; free-body diagrams; mass, acceleration, and force; plane motion of rigid bodies; and, conservation of energy and momentum. Prerequisite: ENGR 201. Pre or Corequisite: PHYS 322 or MATH 333.

ENGR 204. Innovative Design in Engineering. Provides the student engineer with firsthand experience in moving from a stated need to a developed and proof-tested product. Topics include project logbooks and plans, evaluating concepts and selecting a design, preparing design documents, fabrication, development and testing of prototypes, stewardship of the environment, preparation of engineering reports, and principles of contract, engineering, and patent law. Prerequisites: ENGR 201.

ENGR 223. Strength of Materials. Provides a broad range of knowledge of the behavior of materials under load. Topics include: mechanical properties; plane stress and strain; stress and strain relations; axially loaded members; Mohr's circle; stress transformation; torsion of shafts; bending and normal and shear stresses in beams; beam deflection; and combined loading. Prerequisite: ENGR 201.

ENGR 225. Materials Science. Presents the scientific principles underlying the structural analysis of ceramic, composite, metallic (including semiconductors), and polymeric materials. Topics include atomic bonding and structure, electronic structure, micro- and macrostructure. Principles of structural effects on the chemical, mechanical, and physical properties of material are also addressed. Prerequisite: CHEM 231.

ENGR 394. Engineering Ethics Capstone. Engineering ethics and vocation; connections between the liberal arts educational experience and the practice of engineering. Prerequisite: Junior standing in the major. Seminar format meeting once per week for the full semester. (2, lin)

Revision date: June 1, 2017

 

 

About Wheaton        Admissions        Academic        Faculty        Student Life        Alumni

Wheaton College

501 College Ave.

Wheaton, IL 60187

registrar@wheaton.edu

(630) 752-5000